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via Eudossiana 18, I-00184 Rome, Italy

(Received 9 May 2000, and in ,nal form 2 November 2000)

In this paper, the e!ect of pulley eccentricity on the vibration of a power transmission belt
is experimentally investigated and a theoretical model is developed for validation and
identi"cation purposes. This eccentricity gives rise to dangerous operating conditions for the
system, especially when it excites the frequency range of the belt resonances. As expected, the
system shows a hardening non-linear behavior. Moreover, the #uctuation of the belt tension,
due to the pulley eccentricity, gives rise to a parametric instability that can cause
catastrophic failures of the structure. Laser displacement transducers are used to measure
transversal vibrations of the belt. An approximate analytical solution of the travelling beam
dynamics is developed in order to model the system and reproduce the experimental data.
Comparisons between analytical solution and experimental data allow the identi"cation of
the unknown parameters of the analytical model. A validation of the identi"ed model is
performed by comparing analytical and experimental data in di!erent operating conditions.

( 2001 Academic Press
1. INTRODUCTION

In many mechanical applications, power transmission belts play a fundamental role: power
transmission between axes, high-precision motion transmission, synchronization of
movements and so on, represent some examples of applications. Moreover, the physical and
mathematical model describing the dynamics of a power transmission belt is suitable to
model several mechanical systems such as high-speed magnetic tapes, band saw blades,
aerial cable threadlines, and sheet production processes. All previous systems belong to the
class of axially moving systems.

The dynamic behavior of an axially moving system is greatly in#uenced by the presence
of the transport of mass. When a critical value of the axial speed is reached, the "rst linear
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natural frequency vanishes; the straight equilibrium position loses stability and bifurcates
into new equilibrium states. In the sub-critical speed range, all natural frequencies decrease
as the axial speed increases and the vibration modes are complex, even if the system is
conservative.

In actual operating conditions, power transmission belts are subjected to many external
disturbances, such as pulley eccentricity, irregularities of the belt surface and non-stationary
driving motor rotation speed. When an oscillating external excitation causes a resonance,
very dangerous conditions may be found and the axially moving continuum may produce
catastrophic failures, as in the case of parametric instability.

Analytical models for axially moving systems have been extensively studied in the last 50
years. Ashley and Haviland [1], Swope and Ames [2], Mote [3], Thurman and Mote [4]
were the pioneers in this research area. Recently, in reference [5], the study of the problem
of axially moving beams has been tackled in a more systematic way. In reference [6] the
non-linear vibrations and bifurcations of moving beams were investigated in sub- and
super-critical speed ranges, and a local analysis for non-linear oscillations was performed.

Many other papers have been devoted to the analysis of the dynamic behavior of these
systems. A literature overview can be found in reference [7]. Some of these papers deal with
aspects close to the subject of the present work. Ulsoy et al. [8] studied instability
phenomena of a belt tensioner system, including linear parametric instability, and made
qualitative comparisons between numerical and experimental data. Mockensturm et al. [9]
studied analytically the e!ect of a tension #uctuation, giving stability bounds of stationary
solutions. Hwang et al. [10] developed a non-linear model to describe the longitudinal
response of automotive serpentine belts and to predict the belt slip due to the dynamic
tension #uctuation. Moon and Wickert [11] studied experimentally the dynamic behavior
of a power transmission tooth belt in the presence of two in-phase pulley eccentricities,
validating the analytical model proposed in reference [6]. They used a Laser Doppler
vibrometer to measure transversal vibrations of the moving rubber surface. The
experimental results con"rmed the hardening character of the non-linearity. Similar results
were obtained in reference [12], where a Laser Doppler vibrometer was used to measure
vibrations of a #at belt with a single eccentric pulley.

In the present work, an experimental and theoretical study of the non-linear vibrations of
a power transmission belt is performed. Large vibration amplitudes due to several
resonance conditions are experimentally observed and analytically justi"ed. A Laser
Telemeter is used to measure the response of the moving belt. Only the driven pulley
presents an eccentricity, which produces two di!erent excitations: seismic and parametric.
The amplitude frequency curve is experimentally obtained in the case of primary resonance,
due to seismic excitation. The experimental curve is "tted with that of an analytical model,
which is obtained in an approximate closed form. The "tting allows for the setting of some
unknown parameters of the analytical model. The identi"ed model is used to simulate the
belt vibrations in parametric resonance and the results of the simulations are compared
with the experimental data.

2. ANALYTICAL MODEL

In this section, an analytical model is presented for the transversal vibrations of an axially
moving one-dimensional continuum. First of all, a simply supported Euler}Bernoulli beam
model is considered, with the inclusion of the e!ects of body forces due to the axial transport
of mass and the geometric e!ect due to stretching of the beam axis (Figure 1). Then, #exural
sti!ness is neglected and the simpler axially moving string equation is analyzed. This model



Figure 1. Model of the travelling beam.
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does not include boundary e!ects due to the pulley curvature and multi-span interactions,
studied in references [13}17]. However, its e!ectiveness in explaining the experimental
results together with its simplicity makes it very useful. The same model was already
adopted in the literature [11] to study the e!ect of seismic excitation caused by two in-phase
eccentric pulleys.

When an eccentricity of one pulley only is present, as in many actual problems, the
seismic excitation is associated with a tension #uctuation, and the excitation frequency is
equal to the angular velocity of the pulley. The dynamics of the system can be described by
an integro-di!erential equation, which involves the transverse displacement w (x, t) only,
after static condensation of the longitudinal strain [4}7]:
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Suitable initial conditions complete the Cauchy problem.
The following non-dimensional terms describe equations (1a}c) from the physical point of

view: w"wJ /l, x"xJ /l, t"tJ JP/oAl2 , v"vJ /JP/oA , v
T
"JEA/P, v

f
"JEI/Pl2,

p(t)"pJ (t)/P; where l is the beam length, x8 the axial co-ordinate, wJ the transversal
displacement "eld, t8 the time, vJ the axial speed, P the initial tension, p8 the tension
#uctuation, wJ

0
"lw

0
the seismic excitation, o the mass density, A the cross section area,

E the Young modulus, I the area moment. The terms 2vL2w/LxLt and v2L2w/Lx2 represent
the Coriolis and centrifugal forces respectively, whereas the remaining terms are well known
in the beam-string theory and do not require explanation.

The linear operator is skew symmetric due to the presence of Coriolis forces, which imply
complex vibration modes, even though no damping is included in the model and the system
is Hamiltonian. The centrifugal forces cause a decrease in the natural vibration frequencies,

and at a critical value of the axial speed v
cr
"J1#n2v2

f
, they cause a loss of stability and

static bifurcation.
In order to analyze the seismic excitation it is useful to introduce a new variable, which

eliminates the rigid body motion due to the support displacement:

w (x, t)"wL (x, t)#(1!x)w
0
(t).
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Equation (1a) becomes
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Usually, w
0

is very small, then the term (v2
T
/2)(L2wL /Lx2)(w2

0
) can be neglected. The

boundary conditions (1b, c) become

wL (0, t)"0, wL (1, t)"0, (3)

L2wL
Lx2

(0, t)"
L2wL
Lx2

(1, t)"0. (4)

Equation (2) illuminates two interesting aspects of the problem of a belt running on
a series of pulleys, in which at least one of them presents an eccentricity: (1) a direct
excitation due to the inertial terms L2w

0
/Lt2!2vLw

0
/Lt; (2) a parametric excitation p (t) due

to tension #uctuation. It is to be noted that both p(t) and w
0
(t) are harmonic and their

frequency is u"vJ /R rad/s, where R is the pulley radius.
When the beam length is large with respect to the thickness, the #exural sti!ness is

negligible and the "rst term in equation (2) can be omitted. In this case, the eigenfunctions of
the linearized system are known analytically [5], and can be used to expand the solution. In
the following, a single mode expansion will be used to apply the Galerkin procedure to the
non-linear problem. Even though a single mode expansion is a great simpli"cation, it
permits the "nding of a perturbative approximation of the solution through simple
analytical formulas. For the purposes of the present work, such formulas can be su$cient to
explain and justify the experimental evidence and to identify the main system parameters.

2.1. SINGLE MODE EXPANSION AND GALERKIN PROJECTION

In order to study analytically problem (2) and (3) with the simpli"cations outlined in the
previous section, i.e., neglecting the #exural sti!ness and the related terms in equations (2)
and (4), it is useful to introduce the following operators:
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and the following vectors:
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where wR ,Lw/Lt and wK,L2w/Lt2.
Equation (2) becomes

Aw;0 #Bw;#p (t)Cw;"F(w; , t) (5)
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Without external excitations, the eigenvalue problem associated with the linearized
equation (5) is

jA/#B/"0, (6)

where j is an eigenvalue and the vector /(x) is an eigenfunction, which presents the
following structure: / (x)"[jt (x), t (x)]T, where t (x) is a complex function. The solution
of the eigenproblem (6), with the boundary conditions (3), furnishes in"nite eigenvalues and
eigenfunctions, which were analytically evaluated in reference [5]: j

n
"ju

n
"jnn (1!v2),

t
n
"d

n
exp( jnnvx)]sinnnx, n"$1, $2,2; where j"J!1 and d
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constant assumed to be equal to 1/n in the following.
The following metric is introduced to perform projections: Sf
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previously mentioned formalism, the following orthogonality properties of the
eigenfunctions can be found:
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. For a single complex mode

expansion, such properties suggest the following expression of w( :
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The Galerkin procedure gives
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The complex conjugate of equation (9) must be formally included in the analysis.
Moreover, for the purposes of the present work, n"1 is the case of interest. In fact,
experimental data regard primary and subharmonic parametric resonances of the "rst
mode.

As the imposed support displacement w
0
(t) is small, a suitable ordering is introduced:

w
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1
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Moreover, a modal damping k
1
"2d

1
u

1
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1
is introduced. For the sake of simplicity,

the symbol &&bar'' is dropped and the modal equation (9) can be rewritten as
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where the coe$cients are de"ned in Appendix A.
The set of complex ordinary di!erential equations given by equation (10) and its complex

conjugate is now analyzed through the method of normal forms [18}20]. The method is
based upon a non-linear change of co-ordinates whose goal is to eliminate the non-linear
part of the system as much as possible. The simpli"ed form of the system is called the
normal form, which is linear only when the system is hyperbolic, according to the
Hartmann Grobmann theorem [21].

Two di!erent cases are considered here: (1) primary resonance, X:u
1
; (2) parametric

resonance, X:2u
1
. In case (1) equation (10) is studied neglecting the parametric excitation
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that is not resonant, i.e., p (t)"0; in case (2) all terms are retained even though, in the normal
form, the direct excitation disappears.

2.2. PRIMARY RESONANCE

The method of normal forms can be applied to autonomous systems only. In order to
apply this method, the non-autonomous system (10) is transformed into an autonomous
one by introducing a new variable:
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If the excitation frequency is close to the "rst linear natural frequency, one can introduce an
ordering parameter: e2p"u

1
!X.

The non-linear change of variables is
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where the functions h
i
present the same structure of the non-linear portion of dynamical

system to be cancelled. Accurate details of the procedure used here can be found in reference
[22].

The transformation (12) leads to the normal form
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where q"=
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)/2. It must be pointed out that A

5
and A

6
are complex

quantities, so that the coe$cient q can be rewritten as q"q
R
#jq

I
. A

2
is imaginary,

according to the de"nition given in Appendix A.
A further transformation g

1
(t)"f

1
(t) exp ( jXt) is useful to solve equation (13); such

&&demodulation'' allows "ltering out fast oscillations and studying the steady oscillatory
states as "xed points of the following dynamical system:
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Fixed points of equation (14) and its complex conjugate can be easily found by using
Cartesian co-ordinates, i.e., by separating real and imaginary parts, by letting: f

1
"a#jb,

A
2
"jd:

k
1
a

2b
#a2d#b2d#

q
R
b
!p"0, (15a)

k
1
b

2a
#a2d#b2d#

q
I

a
#p"0. (15b)

By summing equation (15a) with equation (15b) p can be eliminated and the solution
a"a (b) or b"b(a) can be easily found. Only the real solutions are retained and substituted
into equation (15a) or (15b), then the parameter p corresponding to the given amplitude of
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oscillation is obtained. The actual response of the system is

w; (x, t)"e (a#jb)/
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i.e., the transverse displacement is given by
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where the ordering parameter e can be included in the amplitude a#jb.
The previous expression furnishes the amplitude frequency response curve, which will be

compared to the experimental curve. The parameter settings in equations (15a, b) deserve
special care: both the damping ratio d

1
and the non-linear parameter v

T
, which a!ect

coe$cients k
1

and d, cannot be easily estimated, so that they are evaluated by comparing
experimental and theoretical responses. In the present s.d.o.f. system, the parameter
identi"cation is quite simple, since only two parameters must be identi"ed. Therefore, no
optimization algorithms are developed, and the identi"cation is obtained by simply
adapting the theoretical response to measured data.

2.3. PARAMETRIC RESONANCE

After introducing the new variable m0
2
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2
, the term p(t), due to the tension
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a parametrically excited system with cubic non-linearities into an equivalent autonomous
system with quadratic and cubic non-linearities. When the excitation frequency is almost
two times the "rst linear natural frequency, an ordering parameter can be introduced:
e2p"2u

1
!X.

The following non-linear change of variables is used:

m
i
"g

i
#eh

1,i
(g

1
, g

2
, g*

1
, g*

2
)#e2h

2, i
(g

1
, g

2
, g*

1
, g*

2
)#O(e3), i"1, 2, (18)

where the functions h
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present the same structure of the portion of the dynamical system
that is to be eliminated. The normal form of the system is
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Recalling that c
2
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2
is complex, and introducing Cartesian co-ordinates, the "xed

points of equation (20) can be studied by separating real and imaginary parts and putting to
zero the time derivatives:
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By following the procedure outlined in the previous section and using the values of
parameters identi"ed in the primary resonance, the amplitude frequency diagrams are
obtained and compared with the experimental data.

3. EXPERIMENTAL SET-UP AND RESULTS

The experiments deal with a power transmission belt, Figure 2. A #at rubber belt with
joint runs on two pulleys, whose diameter is 0)2 m and the distance between axes is 1)01 m.
A "xed tensioner is present on the lower branch. The driven pulley (on the left in Figure 2)
has variable eccentricity, whereas the driver pulley does not present eccentricity. The aim of
the tests is the measurement of the vibration amplitude when both axial speed and pulley
eccentricity are varied.

A laser telemeter is used to measure directly the transverse displacement of the belt. The
axial motion of the belt surface does not pollute measurements obtained with this device.
The telemeter cut-o! frequency is 1000 Hz, and is su$cient in the speci"c experiments; in
fact, the natural frequencies of the lower modes are in the order of some tens of Hz. In
resonance conditions, a large eccentricity can cause an amplitude of oscillation in the order
of 0)2 m in the middle of the upper belt span. The telemeter range is 0)04 m; therefore, the
transducer is located in proximity of the right pulley, where the amplitude of oscillation is
within measurement limits. The closeness of the constraint does not greatly a!ect the
measurement; indeed, a good agreement is found between theoretical forecasts of the
identi"ed model and experimental data.

3.1. PRIMARY RESONANCE

A "rst series of tests deal with the behavior of the system in primary resonance conditions
with di!erent pulley eccentricities. In this situation, the external excitation frequency
u"vJ /R is close to the "rst natural frequency of the system, which is;

u8
1
"(n/l)J(oA/P)((p/oA)!vJ 2) rad/s. In Figure 3, a qualitative comparison between the

successive con"gurations of the belt during an undamped free oscillation, originated by an
initial condition coincident with the "rst analytical mode [Figure 3(a)], and the actual
vibration shape in resonance condition [Figure 3(b)] is shown. The second picture is
obtained by illuminating the vibrating belt with a stroboscopic lamp. It is interesting to note
that the "rst mode is mainly given by a summation of the fundamental shape sinnx, which
represents the linear mode at v"0, and the second wave sin 2nx. This feature, predicted
from theoretical models [7], is in good agreement with the experimental evidence.
Figure 2. Experimental set-up.



Figure 3. Snapshots of the "rst analytical mode at"95%v
cr

(a), and the "rst experimental mode (b).
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In Figure 4(a) a quantitative experimental result is presented for the following
eccentricity: wJ

0
"0)004 m. The behavior of the stationary amplitude of vibration in

correspondence with the measurement point versus the excitation frequency, in the
neighborhood of the "rst linear natural frequency, is shown. Dots represent the actual
amplitudes; balls represent the average values. The excitation level w

0
"wJ

0
/¸ is known and

the measurement of the linear natural frequency at v"0, u8
1,v/0

"2n24)5 rad/s, allows one
to estimate the value of the resonance frequency, which is u8

1,vO0
"2n22)5 rad/s. Suitable

values of damping ratio and non-linear parameter, v
T
"6 and d

1
"0)026, are found by

adapting the theoretical response obtained through the perturbation approach reported in
the previous section to the experimental data. No special algorithms are used to this end.
These values are used to draw the analytical backbone and amplitude}frequency curves,
continuous lines, in Figure 4(a).

A second series of measurements is performed with a slightly di!erent belt pre-tension
with respect to the previous case. The following eccentricities are considered: w8

0
"0)0032,



Figure 4. Frequency amplitude curves. Primary resonance, eccentricity: (a) 0)004 m; (b) 0)0032 m; (c) 0)0013 m;
(d) 0)0006 m; ( ) ) measured amplitude; (s) mean amplitude; (**) analytical solution.
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0)0013 and 0)0006 m; the experimental results, compared with the analytical "tting curves,
are presented in Figures 4(b}d). In Table 1 the main parameters used to obtain the best
"tting are listed (note that also the case wJ

0
"0)004 m with di!erent tension is included). The

di!erent magnitude of u
1,v/0

is due to the di!erent tension and also due to the variable
operating temperature of the belt, which increases with the eccentricity, i.e., with the belt
stress. The damping ratio has been found to be almost constant; conversely, the non-linear
parameter v

T
is signi"cantly di!erent for the case w8

0
"0)0006 m. This discrepancy can be

easily explained: for a very small amplitude of vibration, the system response is almost
linear and the identi"cation of the correct backbone is a!ected by large errors.

The asymmetry and folding due to the presence of a hardening non-linearity are
observable. Note that the experimental data do not match the peak of the analytical curves.
This is clearer for the case wJ

0
"0)004 and 0)0032 m. Indeed, the basin of attraction of the

upper stable branch becomes smaller as the folding is approached, so that the peak of the
curve is not easily measurable. In particular, for a running belt, many disturbances are
present and force the system to orbit in the neighborhood of the more attractive lower
branch.

From the estimate values of v
T

and u8
1,v/0

it is possible to estimate the Young modulus of
the belt material; however, the result is not close to the directly measured value. This is due



TABLE 1

Identi,ed parameters in direct resonance condition

Eccentricity wJ
0

(m) u8
1,v/0

(rad/s) v
T

d
1

0)004 2n24.5 6 0)026
0)0032 2n16.8 6 0)023
0)0013 2n19)4 6 0)020
0)0006 2n19)8 8 0)016
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to some simplifying assumptions on the boundary conditions ("xed ends), not completely in
accord with the actual belt, where they are a!ected by the elasticity of the lower belt span.
For this reason, it is preferable to identify v

T
and create a dynamically equivalent model.

The validity of this model will be proved in the next section.

3.2. PARAMETRIC RESONANCE

Increasing the axial speed, and therefore the excitation frequency, the resonance of the
second mode is expected. Such frequency is approximately two times that of the "rst mode.
In resonance conditions, the system should respond with the frequency of the excited second
mode, and with its superharmonics and combinations. No quadratic non-linearities are
present, so that the 1 : 2 internal resonance between the "rst and the second mode is not
expected. In any case, the actual system responds with a one-half subharmonic, i.e., with half
the excitation frequency and with a spatial shape close to that of the "rst mode. Such
a response is due to the parametric excitation furnished by the axial tension #uctuation and
was predicted by theoretical studies [9]. Here, one can note that the e!ect of the direct
resonance on the second mode is suppressed by the presence of parametric instability;
indeed, in the spectrum of measured time histories (which are not presented for the sake of
brevity) we do not observe energy at the excitation frequency, but a subharmonic response
occurs. In most of the operating conditions, the tension #uctuation does not play any role.
Conversely, it can be experimentally observed that when the excitation frequency
approaches twice that of a linear mode, this mode vibrates with very large amplitude and
most of the energy transfers from high to low frequency.

In Figure 5(a), the response amplitude of the "rst mode in correspondence with the
measurement point, versus the excitation frequency is shown for the case wJ

0
"0)004 m.

The ratio X/2u
1

means that the excitation frequency is normalized with respect to the "rst
linear natural frequency u

1
at the velocity vN such that X(v6 )/u

1
(v6 )"2, which corresponds

to the following dimensional frequency: uJ
1
"2n17)2 rad/s; balls represent measured

amplitudes, continuous lines represent the analytical curves. These are obtained by
following the procedure outlined in section 2.3, equations 21(a, b), using the same
damping ratio d

1
and non-linear parameter v

T
evaluated in primary resonance. The

amplitude of the parameter p
1

is estimated by measuring the frequency variation at v"0
and is equal to 0)4.

A second series of tests is performed for the cases wJ
0
"0)0032, 0)0013 and 0)0006 m, using

the values of parameters identi"ed in direct resonance. The value of v
T

identi"ed in the case
w8
0
"0)0006 m has not been considered because it is very polluted. The tension #uctuation

assumes the following values: p
1
"0)35, 0)2 and 0)1 respectively for wJ

0
"0)0032, 0)0013 and

0)0006 m. Comparisons between analytical response and measured amplitudes are shown in
Figures 5(b}d).



Figure 5. Amplitude frequency response curves. Parametric resonance, eccentricity: (a) 0)004 m; (b) 0)0032 m; (c)
0)0013 m; (d) 0)0006 m; (3) measured amplitude; (*) analytical solutions.
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The parameters p
1

and d
1

establish the existence of parametric instability. In particular,
parametric instability exists when p

1
is large with respect to d

1
, as can be found by means of

the theoretical model. The parameter v
T

gives the curvature of the bifurcated branches and
p
1

gives the distance between them. It must be noted that the "rst branch, which is stable,
"ts very well the experimental data. The comparison con"rms that: (1) the parameter
identi"cation in primary resonance is satisfactory; (2) the analytical model is able to predict
the actual dynamics in di!erent conditions. Coexisting periodic solutions are found when
the excitation frequency is larger than 38 Hz [w8

0
"0)004 m, Figure 5(a)], i.e., the system

can respond both with a one half subharmonic and with a simple harmonic oscillation
having very small amplitude. The upper branch indicates a subharmonic response with
large amplitude.

Note that the upper branch does not present a maximum, i.e., increase the excitation
frequency, the amplitude of oscillation increases monotonically up to a catastrophic level.
Such a phenomenon is typical of the parametric resonance and is quite dangerous for actual
systems. The lower branch of the curve can be obtained experimentally by constraining the
system to orbit in the neighborhood of the lower level response (Figure 5a). In the present
test, a mechanical constraint is introduced in the mid-span of the belt. After removing the
constraint, the system does not jump to the upper branch and the fundamental frequency of
vibration is equal to the excitation frequency. However, under a small perturbation, the
dynamical system tends to return to the subharmonic orbit. This means that the



Figure 6. E!ect of the axial speed, eccentricity 0)0032 m: (a) direct resonance, (b) parametric resonance.
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subharmonic orbit is much more attractive than the harmonic orbit, giving further
con"rmation of the danger of the parametric resonance.

Even though the e!ect of axial velocity on the non-linear behavior has been analyzed in
the past [3], it is of interest to quantify it in the light of the present results, namely, direct
and parametric resonance. Let us suppose that the external excitation is not dependent
upon the axial speed; in this case, resonances can be met for any axial speed. In Figure 6a,
response frequency curves are depicted for axial speeds equal to 0, 29%v

cr
, 50%v

cr
, 75%v

cr
,

and 95%v
cr
. As expected, the in#uence of the centrifugal forces, which reduce the natural

frequencies, is a magni"cation of the non-linear character of the belt. In Figure 6(b)
response frequency curves are depicted for axial speeds equal to 0, 25%v

cr
, 45%v

cr
, 75%v

cr
,



Figure 7. Nonlinear Normal Form coe$cient d versus v, for v
T
"6.
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and 95%v
cr
. As in the previous case, the non-linearity notably grows; moreover, the two

branches of the parametric response become closer to each other as the axial speed
increases. Values of the axial speed equal to 29%v

cr
and 45%v

cr
, correspond to the

experimental cases carried out for the direct and parametric resonances respectively. This
means that the region of instability of the trivial position decreases as the axial speed
increases. Finally, in Figure 7, the behavior of the fundamental non-linear parameter d
(see the normal form (13) where A

2
"jd) is shown; its strong increase as v approaches v

cr
explains Figures 6(a, b).

4. CONCLUSIONS

Direct and parametric resonances of a power transmission belt due to the presence of an
eccentricity of one pulley are studied. Experimental observations with quantitative
measurements are obtained by means of a triangulation laser telemeter and frequency
response curves are drawn when the beam is harmonically excited close to the "rst and
second linear natural frequencies. The asymptotic solution, which justi"es the experimental
evidence, allows for the identi"cation of the main parameters of the equation of motion.
A simple analytical model is obtained by one complex mode approximation. Good
agreement between theoretical and experimental data, observed in several operating
conditions, con"rms the consistency of the analytical model and the identi"cation of the
parameters. The presence of a very stable parametric response is observed, the phenomenon
looks particularly dangerous; in fact an extremely attractive subharmonic response is found,
leading the system to collapse when the axial speed is large enough. To our knowledge,
quantitative comparisons between theoretical and experimental data, with non-linear
parametric identi"cation, regarding axially moving systems, are not present in the existent
literature.
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APPENDIX A

Equation (9) can be specialized for n"1, obtaining the following relationships:

M
1
"n2(1!v2),

F[(m
n
(t)/

n
(x)#m*

n
(t)/*

n
(x)), t]

"2vwR
0
(t)!wK

0
(t)](1!x)!

j exp[!jnv(2#x)]

4
[m*

1
#m

1
exp(2jnvx)]n3v3

][m*2
1

(expM2 jnvN!1)#m2
1
expM2jnvN(expM2jnvN!1)!4jnvm

1
m*
1
expM2jnvN]v2

T
.

Coe$cients of Equation (11) are

A
1
"!

n2 (1#v2)v2
T

sin(nv)(!j cos(nv)#sin(nv))

8v
,
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A
2
"

jnv2
T
(1#4n2v2#8n2v4#4n2v6!cos(2nv))

16v2
,

A
3
"!

3n2(1#v2)v2
T
(!1#cos(2nv)!j sin(2nv))

16v
,

A
4
"

nv2
T
sin(nv)2 ( j cos(2nv)#sin(2nv))

8v2
,

A
5
"

2v cos(nv)!j (!n#2j v#nv2#2v sin(nv))

n3(!1#v2)2
,

A
6
"

2v ( j#j cos(nv)#sin(nv))

n2 (!1#v2)
,

c
1
"!

jn(1#v2)

2
,

c
2
"!

(1!cos(2nv)#j sin(2nv))

4v
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